If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+60x-100=0
a = 3; b = 60; c = -100;
Δ = b2-4ac
Δ = 602-4·3·(-100)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-40\sqrt{3}}{2*3}=\frac{-60-40\sqrt{3}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+40\sqrt{3}}{2*3}=\frac{-60+40\sqrt{3}}{6} $
| 3a/7a=224 | | X+3x+x+5+x+7=360 | | x+(x*18/100)=35000 | | -11z=-44 | | 10-60+6p=0 | | S-5p-5=0 | | D-60+6p=0 | | d+10=10+d | | Y=5.7x+6.4 | | 3=x9 | | x^2/x^2-6=3-2x/x^2-6 | | y/2+y^2/y+1=6 | | t=16/t-6 | | x=0.1(x+5000) | | X^2-16x+88=0 | | 300-x=189 | | y(.35)=105 | | x(.35)=105 | | 7x+4x=1683 | | X^2-9y^2-19=0 | | 2p+15=3p+15 | | 2x^2-20x+90=0 | | 9x+25=755 | | J+3/8.j=3/4 | | s3=27 | | x/6=275+75 | | 4y2-10y=0 | | -2x2+32=0 | | m-293=103 | | y-26=105 | | 730-x=44 | | 633+x=1000 |